Global Asymptotic Stability of a General Class of Recurrent Neural Networks With Time-Varying Delays
نویسندگان
چکیده
In this paper, the existence and uniqueness of the equilibrium point and its global asymptotic stability are discussed for a general class of recurrent neural networks with time-varying delays and Lipschitz continuous activation functions. The neural network model considered includes the delayed Hopfield neural networks, bidirectional associative memory networks, and delayed cellular neural networks as its special cases. Several new sufficient conditions for ascertaining the existence, uniqueness, and global asymptotic stability of the equilibrium point of such recurrent neural networks are obtained by using the theory of topological degree and properties of nonsingular -matrix, and constructing suitable Lyapunov functionals. The new criteria do not require the activation functions to be differentiable, bounded or monotone nondecreasing and the connection weight matrices to be symmetric. Some stability results from previous works are extended and improved. Two illustrative examples are given to demonstrate the effectiveness of the obtained results.
منابع مشابه
Robust stability of stochastic fuzzy impulsive recurrent neural networks with\ time-varying delays
In this paper, global robust stability of stochastic impulsive recurrent neural networks with time-varyingdelays which are represented by the Takagi-Sugeno (T-S) fuzzy models is considered. A novel Linear Matrix Inequality (LMI)-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of uncertain fuzzy stochastic impulsive recurrent neural...
متن کاملGlobal Asymptotic and Exponential Stability of Tri-Cell Networks with Different Time Delays
In this paper, a bidirectional ring network with three cells and different time delays is presented. To propose this model which is a good extension of three-unit neural networks, coupled cell network theory and neural network theory are applied. In this model, every cell has self-connections without delay but different time delays are assumed in other connections. A suitable Lyapun...
متن کاملFurther Result for Globally Asymptotic Stability of a Class of Memristor-Based Recurrent Neural Networks with Time-Varying Delays
This paper investigates the uniqueness and globally uniformly asymptotic stability for a class of memristor-based recurrent neural networks with time-varying delays. By employing a homeomorphism and suitable Lyapunov functional and differential condition, a sufficient conclusion for the uniqueness and globally uniformly asymptotic stability of a class of memristor-based recurrent neural network...
متن کاملGlobal Exponential Stability of a General Class of Recurrent Neural Networks With Time-Varying Delays
This brief presents new theoretical results on the global exponential stability of neural networks with time-varying delays and Lipschitz continuous activation functions. These results include several sufficient conditions for the global exponential stability of general neural networks with time-varying delays and without monotone, bounded, or continuously differentiable activation function. In...
متن کاملFINITE-TIME PASSIVITY OF DISCRETE-TIME T-S FUZZY NEURAL NETWORKS WITH TIME-VARYING DELAYS
This paper focuses on the problem of finite-time boundedness and finite-time passivity of discrete-time T-S fuzzy neural networks with time-varying delays. A suitable Lyapunov--Krasovskii functional(LKF) is established to derive sufficient condition for finite-time passivity of discrete-time T-S fuzzy neural networks. The dynamical system is transformed into a T-S fuzzy model with uncertain par...
متن کامل